2 0

۵

Global Precipitation Measurement

System Definition Review Precipitation Processing System

December 6-8, 2005

Erich Franz Stocker 301/614-5178
Erich.Stocker@nasa.gov
Goddard Space Flight Center
James J. Spero 301/614-5052

Jay.spero@akspace.com

ASRC Aerospace

Composed Of Three Groups

- Civil Servants
- George Mason University Co-op Agreement (science and programming)
- ASRC/RSIS (Engineering, L1 code, I&T, Geolocation)

Approximately 22 FTE in the Following Categories:

- Management
- Science Analysts
- Science Programmers
- Database Programmer
- Programmers
- System Engineering
- Integration and Test

_ of Team Have TSDIS Experience

- PPS Introduction and Concept
- Driving Level-2 Requirements
- Implementation Approach
- Architecture Overview
- Trade Studies
- PPS Documentation
- Risks
- Issues and Concerns
- Road to PDR
- Schedule
- Operation Concept

Precipitation Processing System Level 2 Introduction

Level I Requirements

Mission: Measurement Validation Products Duration Launch Science Data Science Science Products Operations Public Outreach

Other Sources

- ➤ Formulation Study Results
- Science Workshops
- > GSFC Guidelines

Level II Requirements

Science:	Mission:		
➤ Precipitation Types	▶ Data Handling		
Measurements	Payloads		
➤ Coverage			
➤ Frequency & Accuracy	Calibration & Verification Outreach		
Danch Services	♦Process Requirements		
Space Segment:	Ground Segment:		
Instruments - DPR	NASA Mission Operations		
- GMI	 S/C Flight Ops Space/Ground Coordination 		
Core Spacecraft	> Ground Validation & Calibration		
- Performance - Accommodation	 Precipitation Processing System Product Development 		
	- Data Distribution & Archive		
 Constellation Spacecraft Performance 	Data Distribution & Acriive		

œ

A S U

E E

Z

0

V

•

P R E

d

8

0

Data Processing Level-2 Architecture

- 2 = Science data and products
- 3 = Overpass files and science products
- 4 = DPR Instrument Command Requests and Loads
- 5 = Science Algorithms

NASA Asset

Partner Asset

Shared Asset

Changes From SRR

PPS Ops Phase Archive

- PPS will archive and distribute GPM Mission data during operation of the Core and NASA Constellation
- Data will be transferred to a designated facility for long-term archive
 6 months after NASA-provided satellites end operations

GVS Product Ingest Deleted

- PPS will no longer ingest any GVS data or products

GPM

Driving Level-2 Requirements (1 of 4)

 Simultaneous Processing Capacity 	[7.2.20]
 Support for initial processing and reprocessing 	
Data Ingest	[7.2.2]
 Defines the capability to bring raw data into the PPS 	
 Ground Validation 	[7.2.16,7.2.17]
 Coordinate overpasses and co-observations 	
 Data Processing Operations 	[7.2.12,7.2.21]

- Create specified products within required latency
- Data Archiving and Distribution [7.2.7,7.2.10,7.3.1]
 - Makes sure the proper people have data in a timely manner
- DPR Algorithms [7.2.19]
 - Provides capability to integrate the DPR science algorithms from JAXA
- Science Algorithm Support [7.2.18]
 - PPS will provide resources to test and ingest new and improved science algorithms

Driving Level-2 Requirements (2 of 4)

Outreach Products

[8.2,8.3]

- Color rain map updated every 15 minutes with newly arrived data
- DPR Products
 - KuPR surface rain at instrument field of view
 - KuPR multi-level rain at instrument field of view
 - Combined Ku- and Ka-PR surface rain at instrument field of view
 - Combined Ku- and Ka-PR multi-level rain at instrument field of view
- GMI Radiometer Products
 - 10 min Calibrated Brightness Temperature at instrument field of view
 - 10 min Surface Rain at instrument field of view
- Other Radiometers
 - GPM orbit-standard inter-calibrated Brightness Temperature at instrument field of view (1C)
 - GPM orbit-standard Surface Rain at instrument field of view
- 3-hour Merged Product at .25 x .25 degree grid
 - Low Latency Merged radar, radiometer, IR with oldest data no older than 5 hours (low latency but less data)
 - High Latency Merged radar, radiometer, IR with old data no older than 8 hours (high latency, but more complete data)

Driving Level-2 Requirements (3 of 4)

Research Products

[7.2.12]

- Raw Data
- Raw Data put into granule configuration and unpacked (L1A)
- Radiometer
 - GMI Brightness Temperature in GPM orbit-standard at instrument field of view
 - Partner Inter-calibrated Brightness Temperature in GPM orbit-standard at instrument field of view
 - Rain Product at Instrument Field of View
 - Monthly gridded .25 x .25 degree individual radiometer rain product
 - Monthly gridded .25 x .25 degree combined radiometer rain product

Driving Level-2 Requirements (4 of 4)

Research Products (continued)

- DPR
 - Raw data
 - Raw Data Unpacked and put in standard granule size
 - KaPR Powers at instrument field of view (L1B)
 - KuPR Powers at instrument field of view (L1B)
 - KaPR Reflectivity at instrument field of view (L1C)
 - KuPR Reflectivity at Instrument field of view (L1C)
 - KuPR rain products (L2)
 - KaPR rain products (L2)
 - Combined Ku- and KaPR rain products (L2)
 - Monthly, gridded .25 x .25 degree rain products (L3)
- Merged Products
 - 3-hr .25 x .25 degree merged PR, radiometer, IR rain product
 - monthly .25 x .25 degree merged PR, radiometer, IR rain product

[7.2.2]

- Latency from MOC to PPS
- Files Size
- Exchange Protocol

Partner Ingest

[7.2.2]

- Latency
- Files Size
- Exchange Protocol

Œ

8

GPM Driving L-2 Requirements on External Systems

- DPR Algorithms [7.2.19]
 - Specifies that PPS will receive L-1 algorithms from JAXA

Implementation Approach (1 of 2)

- Overall GPM Data Processing System Architecture
 - Geographically distributed among partners
 - PPS is NASA's contribution to the distributed system
 - Major partner role in the provision of data through Level 1b and algorithms
 - Federated approach (interchange through published ICDs)
- Evolution from TRMM Science Data Information System
- Already working system

Implementation Approach (2 of 2)

Prototyping and Incremental Development Approach

- Four Incremental Builds
- Build 1 is an early PPS version that will assume TRMM data processing
- Subsequent builds are tied to science algorithms development
- Build deliveries tied to the project end to end testing
- Each Build goes through PPS I & T testing
- Operational Build goes through a 90-day acceptance test that simulates both forward and reprocessing
- Operational Build contains the "at launch" science algorithm code
- PPS Build-1 will be used for TRMM Version 7 Reprocessing

0

PPS Top Level Software Architecture

- Beowulf Cluster vs. Gridded Cluster
- Process Scheduling Alternatives
- Approach for Clustered Storage

PPS Documentation

Document Name	Document Number	Status
PPS Project Management Plan	PPS-610.2-101	Draft
PPS Configuration Management Plan	PPS-610.2-102	Version 1
PPS Operations Concept	PPS-610.2-103	Draft
PPS Build Plan	PPS-610.2-104	Draft
PPS Requirements Document	PPS-610.2-201	Draft
PPS to Science Team ICS	PPS-610.2-221	Preliminary post PDR
PPS Product Specification	PPS-610.2-231	Preliminary post PDR
PPS Product Volume Estimates	PPS-610.2-231a	Preliminary post PDR
PPS Master Test Plan	PPS-610.2-301	Draft
PPS System Test Plan	PPS-610.2-302	Preliminary Draft
PPS Acceptance Test Plan	PPS-610.2-303	Preliminary post PDR
PPS System Test Procedures	PPS-610.2-32x	Preliminary post PDR
PPS Component Test Procedures	PPS-610.2-34x	Preliminary post PDR
PPS Acceptance Test Procedures	PPS-610.2-36x	Preliminary post PDR
PPS Software Architecture Document	PPS-610.2-401	Draft
PPS Operation Manual	On-Line	Preliminary post PDR

JAXA Data Policy

[Risk H-2]

— Will JAXA allow PPS to freely distribute DPR data and products?

This is a mission level risk tracked at project level

Issues and Concerns

NASA/GSFC Network Security

- May be too restrictive with regard to data ingest and distribution from/to partner sites
- May be too restrictive with regard to data distribution to users

DPR Algorithm Acquisition

[7.2.19]

— Will JAXA provide PPS with appropriate DPR algorithms in a timely manner?

PPS Activities

- Complete Draft PPS Project Management Plan: January 2006
- Complete Preliminary PPS Build Plan: February 2006
- Complete Preliminary PPS Operations Concept Document: February 2006
- Complete Draft of Trade Studies: May 2006

PPS Reviews

- PPS Build-1 Review - February 21-22, 2006

PPS Operations Concept

Schedule

- Demo #1 September 2002
- Demo #2 May 2004
- Build 1 Review February 21-22, 2006

Attendance

- Scientists (internal and external)
- NOAA
- NASA HQ
- GPM Project

Day 2 - December 7, 2005 Location: NASA GSFC B16W-N76/80

Time	Section	Event	Presenter
8:30 AM	12	Core Spacecraft Management	Horowitz
9:30 AM	13	Primary Spacecraft Systems Engineering	O'Neill
11:00 AM		Break	
11:15 AM	14	Mission Operations System Concept/Requirements	Rykowski
12:15 PM		Lunch	
1:15 PM	15	Precipitation Processing System Concept/Requirements	Stocker
2:15 PM	16	Ground Validation	Schwaller
3:15 PM		Break	
3:30 PM	17	Risk Assessment	Durning
3:45 PM	18	Review Wrap Up	Durning/Ho
4:00 PM		Review Team Caucus	
4:15 PM		End of Day 2	

